a2 United States Patent

Williams et al.

US009355014B2

US 9,355,014 B2
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)
")

@

(22)

(65)

(30)

Sep. 24, 2010

(1)

(52)

(58)

DEBUG INSTRUCTION SET ALLOCATION
ACCORDING TO PROCESSOR OPERATING
STATE

Michael John Williams,
Cambridgeshire (GB); Richard Roy
Grisenthwaite, Cambridgeshire (GB);
Simon John Craske, Cambridge (GB)

Inventors:

Assignee: ARM Limited, Cambridge (GB)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 507 days.

Notice:

Appl. No.: 13/137,375

Filed: Aug. 10,2011

Prior Publication Data

US 2012/0079254 A1 Mar. 29, 2012
Foreign Application Priority Data

(GB) 1016077.8

Int. Cl1.
GO6F 9/318
GO6F 11267
GO6F 11736
GO6F 9/455
GO6F 9/30
U.S. CL

CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

GO6F 11/3648 (2013.01); GO6F 9/30189
(2013.01); GO6F 9/45554 (2013.01)
Field of Classification Search

CPC GOGF 9/30189; GOGF 9/45554; GOGF
11/3648
USPC oo 712/227,229

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,621,886 A * 4/1997 Alpertetal. ... 714/38.13

6,802,017 B1* 10/2004 Takayamaetal. 713/324

7,134,116 B1 11/2006 Thekkath et al.

8,769,495 B1* 72014 Guptaccccoeveveinnen 717/124
2006/0048099 Al* 3/2006 Templinetal. 717/124
2007/0180333 Al 8/2007 Thekkath et al.

2008/0040587 Al 2/2008 Burke et al.

2008/0046701 Al* 2/2008 Kershawetal. 712/228

2008/0086726 Al 4/2008 Griffith et al.

(Continued)
FOREIGN PATENT DOCUMENTS
P 2008-97602 4/2008
WO 2012/038710 3/2012
OTHER PUBLICATIONS

Wikipedia.org, “64-bit computing”, Aug. 11, 2009, downloaded
from “http://en. wikipedia.org/w/index.php?title=64-bit_computing
&oldid=307359248” on Feb. 3, 2014. 10 pages.*

(Continued)

Primary Examiner — Andrew Caldwell
Assistant Examiner — Yuqing Xiao
(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.

(57) ABSTRACT

A data processing apparatus is provided comprising data
processing circuitry and debug circuitry. The debug circuitry
controls operation of the processing circuitry when operating
in a debug mode. The data processing circuitry determines
upon entry into a debug mode a current operating state of the
data processing apparatus. The data processing circuitry allo-
cates one of'a plurality of instruction sets to be used as a debug
instruction set depending upon the determined current oper-
ating state.

34 Claims, 7 Drawing Sheets

610
Process i i

from memory

YAN

allocate AG4
instrn set
for debug

Lr660

processor
W
640

670

allocate 732
instrn set
for debug

650

processar indicates
" ,

insten sef to use

Process instructions | 680
from ITR

700

US 9,355,014 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0216073 Al*
2008/0270107 Al

OTHER PUBLICATIONS

9/2008 Yatesetal.ccceeee 718/100
10/2008 George et al.

“ARM® Architecture Reference Manual”, Apr. 2008, ARM Limited,
ARM® v7-A and ARM® v7-R edition, p. C5-13.*

International Search Report mailed Sep. 22, 2011 in PCT/GB2011/
051410.

“MIPS architecture” Wikipedia, Sep. 2010, http://en.wikipedia.org
pp. 1-12.

MIPS Technologies Inc. “MIPS32 4Kc¢™ Processor Core Datasheet”
Rev. 01.03, Jun. 2000, pp. 1-30.

MIPS Technologies Inc. “MIPS64™ 5Kc¢™ Processor Core
Datasheet” Rev. 02.23 Nov. 2001, pp. 1-44.

Power.org, “Power.org™ Target Debug Capabilities Specification”
Version 1.0, May 2008, pp. 1-18.

International Preliminary Report on Patentability mailed Nov. 29,
2012 in PCT/GB2011/051410.

ARMT7TDMI-S Technical Reference Manual, Revision r4p3, Sep.
2001, 242 pages.

ARNI1176JZ-S Technical Reference Manual, Revision 10p7, Jul.
2004, 128 pages.

Search Report for UK 1016077.8, dated Jan. 7, 2011.

Search Report for UK 1016077.8, dated Jun. 14, 2011.

Edwards et al., “Debugging the SH-5 microcontroller”, Embedded
System Engineering, Sep. 2000, 5 pages.

English translation of Japanese Office Action dated Jun. 2, 2014 in JP
2013-529705, 4 pages.

English translation of Chinese Office Action dated Dec. 31, 2014 in
CN 201180045900.2, 19 pages.

English translation of Japanese Office Action dated Feb. 9, 2015 in JP
2013-529705, 2 pages.

Malaysian Office Action dated Jan. 29, 2016 issued in ML
PI2013700228, 3 pages.

Malaysian Office Action dated Jan. 29, 2016 issued in ML
P12013700228, 3 pages.

Chinese Third Office Action dated Mar. 4, 2016 issued in CN
201180045900.2 and English translation, 7 pages.

* cited by examiner

US 9,355,014 B2

Sheet 1 of 7

May 31, 2016

U.S. Patent

0Gl
f

A%]"
x

JHYM1L40S
4399n833d

3d 1SCH

L Old

AJONIN

1] diHD-440

(008) dIHO-NO-WALSAS

001

Zel ocl
~ Y
140d
ong4a M1
Y% ICEIeE]
vmr\ 3TNAOW
9¢l’| ongaa

AHOWAW
71/l dIHONO
oy s W
09}
&
ININ3dId
NOILND3XT
= S4315193Y
Obl T04INOD
0z1-]
AHLINDHID ONISSIDONd VLIVa

US 9,355,014 B2

Sheet 2 of 7

May 31, 2016

U.S. Patent

¢ 9Old

............... © (19 v9)
Jojuow 8indag
— 81n28g
0ve 3In2as-UoN omfw
J0sinadAH
9ze vee cee
S S Y
(na v9) (ua v9) (Mq z¢)
SO @inag ¢ SOsen9 | SO 1889
oLz 602 80¢ 902 02 20z
S 9 G 4 Y Y
oN_ﬁ_aMm ev_nauwv (1 7¢) (19 59) (1 7¢) (1 2¢)
amoag| [ainsg ¢’z ddy }'g ddy ¢’} ddy '} ddy
UL L 0Ll L 004} 001}
—
[0:eImd

U.S. Patent May 31, 2016 Sheet 3 of 7 US 9,355,014 B2

Privilege level Virtual to Physical address
410 translation and privilege checking
Ik
PLO
(Application) VA3 —————» IPA— o PA
32 bit TTBRO_PLT, VTTBR_PL2
TTBR1_PLA1
PLT 420
(Guest0S) VA3p———— IPA—— 5 PA
32 bit TTBRO_PL1, VTTBR_PL2
TTBR1_PL1
PL2
(Hypervisor) |f 430 VA4 ————» PA
64 bit TTBR_PL2
PL3
(Secure monitor) 440 VA4 ———— PA
64 bit L TTBR_PL3

FIG. 3

U.S. Patent May 31, 2016 Sheet 4 of 7 US 9,355,014 B2

PL[9:8] | privilege level RW[13:10] | processor state for each privilege level
00 PLO 111 PLO-PL3 all AArch 64 processor state
01 PL1
10 PL2 1110 PLO AArch 32 state
11 PL3 PL1-PL3 AArch 64 state

1100 PLO-PL1 AArch 32 state
FIG. 4B PL2-PL3 AArch 64 state

(never seen if EL2 not present
in current security state)

1000 PLO-PL2 AArch 32 state
PL3 AArch 64 state
No PL2 in secure state
PLO-PL1 in AArch 32

0000 PLO-PL3 all AArch 32

FIG. 4C

31[30[20]28] 27126 251241231221 2412019148117] 16115114 13]12[11101 9 [B8] 716 151413121110
RW PL

FIG. 4A

US 9,355,014 B2

Sheet S of 7

May 31, 2016

U.S. Patent

33281
ED

ctl

¥cs

£
¢cs cv

a)B)s Yipim Jaysibal
¢€ Yalyy

0LG

G Ol

066G

ale1s yipim Jaysibal

79 Ylvy

U.S. Patent

May 31, 2016

Sheet 6 of 7 US 9,355,014 B2

f61 0
Process instructions
from memory

620

/

allocate Ab4
instrn set
for debug

660

Debug
event ?

Y

Enter debug | 630

mode

64-bit
processor
state 7 _~

640 Y

allocate T32
instrn set
for debug

650

670
H

processor indicates
to debugger which
instrn set to use

)

Process instructions
from ITR

Exit Change

debug mode privilege level

7

690
FIG. 6

U.S. Patent

May 31, 2016 Sheet 7 of 7

VM
Implementation

Application S 710
ﬂ
AP (Virtual)
Y
VM f720
]
Y
Host 0S 730
]
)
Host Hardware f74o

FIG. 7

US 9,355,014 B2

US 9,355,014 B2

1
DEBUG INSTRUCTION SET ALLOCATION
ACCORDING TO PROCESSOR OPERATING
STATE

This application claims priority to UK Patent Application
No. 1016077.8 filed 24, Sep. 2010, the entire contents of
which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to data processing. More
particularly, the present invention relates to debugging of a
data processing apparatus.

2. Description of the Prior Art

Debugging of a data processing apparatus is a methodical
process of finding and reducing the number of bugs or defects
in either a computer program running on the data processing
apparatus or a piece of electronic hardware comprising the
data processing apparatus. As they have developed over time,
microprocessors and the software designed to run on them
have become more complex so the process of debugging has
become progressively more challenging in terms of devising
efficient methods and systems to detect defects in operation.
It is known to provide a debug mode of a data processing
apparatus into which the data processing apparatus is
switched in order to execute debug operations.

With the complexity of modern microprocessors, it is now
not unusual for a given microprocessor to be capable of
executing more than one instruction set. For example the
ARM7TDMI® processor core is capable of executing both a
regular “A32” instruction set (also known as the “ARM”
instruction set) comprising 32-bit wide operation codes, and
amore compact instruction set denoted ““I'32” (also known as
the “Thumb” instruction set) that provides a subset of the
most commonly used A32 instructions that have been com-
pressed into 16-bit wide operation codes. On execution, the
16-bit wide instructions can be either decompressed to the
full 32-bit wide A32 instructions or executed directly using a
dedicated decoding unit. Thus a given data processing appa-
ratus can be capable of executing a plurality of different
instruction sets. Both the A32 instruction set and the T32
instruction set operate on 32-bit wide data.

In addition to a given data processing apparatus being
capable of executing a plurality of different instruction sets,
many modern data processing apparatuses are capable of
operating in a plurality of different operating states or at a
plurality of different “privilege levels”. At different privilege
levels, the data processing apparatus imposes on program
instructions different access permissions to at least one of
memory and a set of registers. For example, the set of control
registers accessible to the processing circuitry at a standard
privilege level will typically be more restricted than the set of
control registers accessible to the data processing apparatus
when operating at a higher privilege level, e.g. when a data
processing apparatus is operating in a system mode rather
than a user mode. When operating at different privilege levels
the data processing apparatus will typically apply different
virtual to physical memory address translation schemes for
translating memory addresses of program instructions.

For example, in data processing systems that implement
virtualisation and run a hypervisor to enable a plurality of
different guest operating systems to be run on the same data
processing apparatus, any privilege level of the data process-
ing apparatus that sits below the privilege level of the hyper-
visor (i.e. runs under supervision of the hypervisor) will have
an additional level of address translation associated with the

10

15

20

25

30

35

40

45

50

55

60

65

2

virtualisation process. The additional level of address trans-
lation makes use of a “virtual translation table base register”.
However, the privilege level corresponding to the hypervisor
layer itself does not require reference to a virtual translation
table base register but only to a translation table base register
and thus will involve one fewer translation stage.

It is known in processors that are capable of executing a
plurality of instruction sets to impose a default debug instruc-
tion set for use when the data processing apparatus is in a
debug mode. For example, in the ARM10, ARM11 and ARM
Cortex processors the default was to use the A32 instruction
set whenever the data processing apparatus switched into a
debug mode. An alternative known approach used, for
example in ARM7TDMI® and ARM9 processors is that upon
entry to the debug mode the instruction set state remains as it
was on entry to the debug mode so that if the data processing
apparatus was executing T32 instructions upon entry to the
debug mode then T32 instructions would be used for the
debug process whereas if the data processing apparatus was
executing A32 instructions upon entry to the debug mode then
the debug process would be executed using A32 instructions.

However, problems can arise due to the possible mismatch
between the operating state of the data processing apparatus
i.e. the privilege level at which the data processing apparatus
is operating when debug operations are to be performed and
the instruction set allocated for use in the debug mode of the
data processing apparatus. Thus, for example, the virtual to
physical address translation scheme appropriate for the cur-
rent privilege level of the processor could be incompatible
with the chosen debug instruction set. This can present a
particular problem in a data processing apparatus config-
urable to have a variable-width register for instructions
because instructions having a larger operand bit-width could
have to be used for a debug process whereas the operating
state of the processor may mean that a 32-bit virtual to physi-
cal address translation scheme should be implemented in the
debug mode. This potential mis-match between the processor
operating state and the debug instruction set increases the
complexity of the debug operations because the debug mod-
ule hardware will then have to be designed to accommodate a
large number of bit patterns corresponding to each of the
plurality of instruction sets that can be executed by the data
processing apparatus. Thus there is a requirement to reduce
the complexity of the debug circuitry yet still offer the flex-
ibility to debug a data processing apparatus capable of oper-
ating at a plurality of different privilege levels and/or capable
of executing a plurality of different instruction sets.

SUMMARY OF THE INVENTION

According to a first aspect the present invention provides a
data processing apparatus comprising:

data processing circuitry for performing data processing
operations in response to execution of program instructions,
said data processing circuitry being configured to operate in
at least an operational mode and a debug mode;

debug circuitry configured to provide an interface between
said data processing circuitry and a debugger unit external to
said data processing circuitry, said debug circuitry being con-
figured to control operation of said data processing circuitry
when said data processing apparatus is operating in said
debug mode;

wherein said data processing circuitry is configured to
determine, upon entry of said data processing circuitry into
said debug mode, a current operating state of said data pro-

US 9,355,014 B2

3

cessing circuitry and to allocate, depending upon said current
operating state, one of a plurality of instruction sets to be used
as a debug instruction set.

The present invention recognises that by determining upon
entry of the data processing circuitry into the debug mode the
current operating state of the data processing apparatus and
allocating, depending upon the current operating state, one of
the plurality of instruction sets to be used as a debug instruc-
tion set, a good level of flexibility is afforded. This is because
it provides the opportunity to use more than a single default
instruction set in a debug mode, yet to appropriately select the
chosen instruction set depending upon the current operating
state of the data processing apparatus. This improves the
likelihood of the compatibility between the current operating
state of the data processing circuitry and the allocated debug
instruction set.

By not simply choosing the current instruction set upon
entry to the debug mode, the total number of instructions that
needs to be supported in the debug mode can be reduced. In
fact, only a subset of the full plurality of instruction sets
capable of execution by the data processing apparatus need be
implemented in the debug mode. This simplifies validation of
the debug instructions and reduces the cost of the debugging
circuitry. Effectively, enabling allocation of one of a plurality
of instruction sets depending upon the current operating state
of the data processing circuitry upon entering debug mode
ensures that the instructions being decoded in the debug mode
are appropriate to the memory configuration (i.e. privilege
level) of the current operating state.

It will be appreciated that the data processing apparatus
could be configured to operate in any one of a number of
different operating states involving different views of the data
processing hardware and that an appropriate debug instruc-
tion set could be allocated according to the particular prop-
erties of the current operating state. However, in some
embodiments the data processing circuitry is configurable to
operate at a plurality of privilege levels, wherein at different
privilege levels, the data processing circuitry imposes on
program instructions different access permissions to at least
one of a memory and a set of registers. For example, at a
higher privilege level, the data processing apparatus could
have access to a larger set of control registers than at a lower
privilege level. The different views of memory and/or regis-
ters applicable to different privilege levels makes compatibil-
ity between the debug instruction set and the current operat-
ing state of the processor more important. The ability to
allocate the debug instruction set from a plurality of alterna-
tive debug instruction sets depending upon the current privi-
lege levels improves the efficiency of the debug operation.

It will be appreciated that at different privilege levels the
data processing apparatus could have various differences in
operating state, apart from the difference in access permis-
sions to at least one of memories and registers. However, in
one embodiment, at different ones of the privilege levels, the
data processing circuitry applies respectively different virtual
memory address to physical memory address translation
rules. Where different virtual to physical address translation
rules are used by the data processing apparatus in different
operating states, the debug operation could become unduly
complex if an inappropriate debug instruction set is allocated
in debug mode. For example, a problem could arise where the
current operating state is a guest operating system configured
to translate 32-bit virtual addresses into physical addresses
whereas the default debug instruction set comprises instruc-
tions that generate 64-bit virtual addresses. This would either
require 32-bit virtual addresses to be generated from the
64-bit debug instructions, or a means to translate 64-bit vir-

35

40

45

4

tual addresses in a system configured to translate 32-bit vir-
tual addresses. Thus; the ability to appropriately allocate a
debug instruction set depending upon a current operating
state of the processor is useful for avoiding incompatibility
between a currently implemented virtual to physical memory
address translation scheme and instructions to be executed for
debug operations.

In some embodiments, the data processing apparatus is
configured to execute program instructions corresponding to
a plurality of different software hierarchical levels corre-
sponding to a respective plurality of privilege levels. Thus, for
example, one privilege level may correspond to a guest oper-
ating system whereas another privilege level may correspond
to a user application. Problems can arise due to the general
requirement for a data processing apparatus to be backwards
compatible in terms of software, such as a requirement, to be
able to execute a 32-bit operating system on a data processing
apparatus inherently capable of executing 64-bit instructions.
The ability to allocate an appropriate debug instruction set
depending upon a current operating state and accordingly a
current software hierarchical level provides flexibility within
the debug system to adequately cope with debugging in a
system that incorporates backwards compatibility.

It will be appreciated that the plurality of privilege levels
corresponding to the different software hierarchical levels
could comprise many and varied different combinations of
software layers. However, in one embodiment, the plurality of
software hierarchical layers comprises a hypervisor layer in
addition to an application layer and an operating system layer.
This enables the system to conveniently cope with virtualisa-
tion.

In a further embodiment in addition to the application
system layer and the operating system layer and either with or
without the hypervisor layer, a security-monitoring layer is
provided. Ensuring that an appropriate debug instruction set
is selected when operating in a secure mode is particularly
important to preserve the integrity of the data processing
apparatus.

It will be appreciated that upon initial entry to the debug
mode a single debug instruction set could be allocated
depending upon the current operating state upon entry to the
debug mode. However, in some embodiments, the data pro-
cessing apparatus is configurable from within the debug
mode itselfto switch between different ones of the plurality of
privilege levels and the data processing circuitry is configured
to repeat the determination of the current operating state of
the determination and repeat allocation of the debug instruc-
tion set depending upon the newly switched operating state of
the data processing apparatus. This ensures that, despite
switches in the current operating state whilst debug opera-
tions are being performed, an appropriate debug instruction
set is still allocated. This provides the additional flexibility to
enable the debug circuitry to be controlled to switch from one
operating state to a different operating state in order to further
investigate a prospective system bug and ensures that, despite
this flexibility, compatibility between the debug instruction
set and the current operating state is maintained.

It will be appreciated that the current operating state of the
data processing apparatus could be selected from a plurality
of different processor operating states having identical oper-
and bit-widths. However, in one embodiment, the current
operating state is selected from a plurality of different pro-
cessor operating states having respective different operand
bit-widths. In a data processing apparatus capable of execut-
ing instructions having different operand bit-Widths, compat-
ibility problems are likely to arise, for example, due to virtual
to physical address translation schemes differing between the

US 9,355,014 B2

5

two different operand bit-widths etc. Thus the ability to
appropriately allocate a debug instruction set according to the
current operating state is useful in avoiding having to imple-
ment unduly cumbersome conversion processes when in a
debug mode. In some such embodiments the plurality of
operating states having operand bit-widths comprises at least
a 32-bit operating state and a 64-bit operating state.

It will be appreciated that the present technique could be
applied to any data processing apparatus such as a data pro-
cessing apparatus that executes instructions by reading oper-
ands from memory. However, in some embodiments the data
processing apparatus comprises a plurality of registers for
storing operands of the program instructions and wherein the
different operand bit-widths correspond to different register
widths used by the processing circuitry. In such a data pro-
cessing apparatus that is configurable to use variable register
widths, it is useful to be able to allocate an appropriate debug
instruction set depending on the current operating state since
the allocation of the debug instruction set can be appropri-
ately chosen depending upon the current set up of the vari-
able-width registers. In some such embodiments at least a
subset of the plurality of registers having different operand
bit-widths are configured as variable width-registers.

In some embodiments, the data processing circuitry is con-
figured to indicate the debug instruction set that has been
allocated depending upon the current operating state to the
debug circuitry by writing to at least one register accessible to
the debug circuitry. This provides a convenient way of indi-
cating the appropriate debug instruction set for use by the
debug circuitry. In alternative embodiments the data process-
ing circuitry is configured to indicate the debug instruction set
to the debugger unit by sending a control command to the
debugger unit. This saves on register space.

It will be appreciated that the data processing apparatus
could determine the current operating state in any one of a
number of different ways. However, in some embodiments,
the data processing apparatus is configured to maintain a
stored value of the current operating state in a given location
accessible to the debugger unit. This is straightforward to
implement and allows for easy access by the debugger unit to
the current operating state whenever it is required regardless
of' when the data processor switches from a non-debug mode
into the debug mode.

In some embodiments, where the data processing appara-
tus is configurable to operate at a plurality of different privi-
lege levels, the current operating state is selected from a
plurality of processor operating states having respective oper-
and bit-widths and the data processing apparatus is config-
ured to maintain a record of an operand bit-width associated
with each of the plurality of privilege levels in a first location
accessible to the debug circuitry. The operand bit-widths of
the different processor operating states are not necessarily all
different, for example, with four privilege levels and two
bit-widths the same operand bit-width can be used for two or
more privilege levels. This provides a convenient means of
storing for each possible privilege level an associated operand
bit-width, which means that the appropriate debug instruction
set can be readily determined. It should be noted that the
operand bit-width currently stored in the maintained record
will depend upon the current time, since it will be appreciated
that at different times the data processing apparatus may be
executing, for example, a different program operation or a
different guest operating system and accordingly the operand
bit-width associated with a given privilege level may be dif-
ferent at different times.

In some such embodiments in which the record of the
operand bit-width associated with each of the plurality of

40

45

50

65

6

privilege levels is stored in a first location, the data processing
apparatus is also configured to maintain a record of the cur-
rent privilege level at which the data processing circuitry is
operating in a second location accessible to the debugger unit.
By reference to both the first location and the second location,
the debugger unit can readily determine an operand bit-width
corresponding to the current privilege level and accordingly
can appropriately determine the debug instruction set that the
data processing circuitry has allocated depending upon the
current operand bit-width.

In some embodiments the data processing circuitry uses
said current privilege level to determine from said plurality of
processor operating states having said respective operand
bit-widths said debug instruction set. In some such embodi-
ments the data processing apparatus is configured to maintain
a record of a current operand bit-width corresponding to a
current processor operating state.

In alternative embodiments the debugger unit is configured
to use said record of said current operand bit width to deduce
the debug instruction set and to cause at least one program
instruction to be executed by the data processing circuitry to
determine a current privilege level at which the data process-
ing circuitry is operating. This is cheaper to implement since
it uses less register space than providing a storage location for
an operand bit-width for each of the plurality of possible
privilege levels. The fact that less register space is used offsets
the additional cost in terms of the logic required to determine
the current exception level. Although the debugger unit
deduces the debug instruction set in this case, the data pro-
cessing circuitry makes the initial determination of the appro-
priate debug instruction set (i.e. actually allocates the debug
instruction set) and the debugger unit then works out what the
data processing circuitry did based on the register contents.

On the other hand, in the embodiments that use both the
record of the current privilege level and the record of the
operand bit-width associated with at least a plurality of privi-
lege levels the state of these two sets of storage locations is
likely to conveniently mirror the state of, for example, regis-
ters elsewhere in the processor and provides more informa-
tion to the debugger and reduces the number of program
instructions to be executed in order to determine the appro-
priate debug instruction set.

It will be appreciated that the allocated debug instruction
set could comprise a full instruction set available for execu-
tion by the data processing apparatus in a non-debug mode.
However, in some embodiments, the allocated debug instruc-
tion set comprises a subset of a full instruction set. In some
such embodiments the subset is a subset of one of: an A32
instruction set; a T32 instruction set; a T32EE instruction set;
and an A64 instruction set. Thus, those instructions of the full
instruction set that would be undesirable and/or not useful to
implement in a debug mode can be readily excluded from the
subset of full instructions allocated for use in the debug mode.
For example branch instructions of a given full instruction set
can be forced to be undefined when in a debug mode.

According to a second aspect the present invention pro-
vides a data processing method comprising:

performing data processing operations in response to
execution of program instructions on data processing cir-
cuitry being configured to operate in at least an operational
mode and a debug mode;

providing a debug interface between said data processing
circuitry and a debugger unit external to said data processing
circuitry, said debug interface being configured to control
operation of said data processing circuitry when said data
processing circuitry is operating in said debug mode;

US 9,355,014 B2

7

determining, upon entry of said data processing circuitry
into said debug mode, a current operating state of said data
processing circuitry and allocating, depending upon said cur-
rent operating state, one of a plurality of instruction sets to be
used as a debug instruction set.

According to a third aspect the present invention provides
a data processing apparatus comprising:

means for performing data processing operations in

response to execution of program instructions, said
means for performing data processing operations being
configured to operate in at least an operational mode and
a debug mode;

means for debugging configured to provide an interface
between said means for performing data processing and a
means for debug analysis external to said data processing
apparatus, said means for debugging being configured to
control operation of said means for performing data process-
ing when said means for performing data processing is oper-
ating in said debug mode;

wherein said means for performing data processing is con-
figured to determine, upon entry of said means for performing
data processing into said debug mode, a current operating
state of said means for performing data processing and to
allocate, depending upon said current operating state, one of
aplurality of instruction sets to be used as a debug instruction
set.

Various respective aspects and features of the invention are
defined in the appended claims. Combinations of features
from the dependent claims may be combined with features of
the independent claims as appropriate and not merely explic-
itly as set out in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a data processing appara-
tus according to a first embodiment of the present invention,
in which the processor implements a variable register-width
and a debug module is provided comprising an external debug
interface register;

FIG. 2 schematically illustrates a plurality of different
operating states of the data processing apparatus of FIG. 1 and
how those operating states correspond to a plurality of differ-
ent privilege levels and a respective plurality of software
hierarchical levels;

FIG. 3 schematically illustrates four different privilege
levels, how switches between the different privilege levels are
performed by the data processing apparatus and how different
privilege levels implement different schemes for virtual
address to physical address translation;

FIG. 4A schematically illustrates a subset of bit allocations
in the external debug interface register (EDIFR) of FIG. 1;

FIG. 4B schematically illustrates bit patterns and respec-
tive privilege levels for the privilege level indicator bits of the
EDIFR of FIG. 1;

FIG. 4C schematically illustrates for each of a plurality of
register width bit-patterns the corresponding processor state
for each of the four privilege levels;

FIG. 5 schematically illustrates a mapping between a pro-
cessor operating state and the available corresponding
instruction sets for both a 32-bit processor operating state and
a 64-bit processor operating state;

FIG. 6 is a flow chart that schematically illustrates how an
appropriate debug instruction set is allocated by the data
processing apparatus of FIG. 1; and

15

20

25

35

40

45

60

8

FIG. 7 schematically illustrates a virtual machine imple-
mentation.

DESCRIPTION OF EMBODIMENTS

FIG. 1 schematically illustrates a data processing appara-
tus according to an embodiment of the present invention. The
data processing apparatus comprises an integrated circuit 100
comprising a plurality of circuitry components forming a
“System-on-Chip”. The integrated circuit 100 comprises: an
execution pipeline 110, a set of general purpose registers 120,
a set of control registers 160, a debug module 130, a debug
port 132, a memory management unit (MMU) and an on-chip
memory 142. The data processing apparatus 100 also has
access to off-chip memory 144. The debug port 132 of the
data processing apparatus 100 is connected to a host personal
computer 150 configured to run a set of debugger software
152 to assist in debugging the data processing circuitry 100.

The data processing apparatus 100 of FIG. 1 has a RISC
(Reduced Instruction Set Computing) architecture, whichis a
load-store architecture in which instructions that process data
operate only on registers and are separate from instructions
that access memory. The data processing apparatus 100 is a
pipelined data processing apparatus and the execution pipe-
line 110 comprises a fetch stage, a decode stage and a execute
stage (not shown). The set of registers comprises general
purpose registers 120 as well as control registers 160. In this
particular embodiment, the set of registers 120 comprises a
plurality of 64-bits registers, which are configurable to oper-
ate as variable-width registers such that when the data pro-
cessing circuitry 100 is operating in a 32-bit register width
operating state, i.e. when executing a program that substan-
tially processes 32-bit data and uses 32 bits of virtual address
(referred to as a 32-bit program, comprising 32-bit program
instructions), the set of registers 120 are viewed by the data
processing apparatus as 32-bit registers, whereas when the
data processing apparatus 100 is operating in a 64-bit register
width operating state, i.e. when executing a program that
substantially processes 64-bit data and uses more than 32 bits
of virtual address (referred to as 64-bit program, comprising
64-bit program instructions), it is configured such that the full
64-bit width of each register of the set of registers is 120 is
utilised. However, note that when the processing circuitry 100
is operating in a 32-bit register width operating state some
64-bit operations (e.g. wide multiplies and load/store of a 64
bit value) can still be performed. Similarly, when the process-
ing circuitry 100 is operating in a 64-bit register width oper-
ating state some 32-bit operations may still be performed.

When in a non-debug mode of operation, the data process-
ing circuitry 100 fetches instructions for execution from sys-
tem memory i.e. from either on-chip memory 142 or oft-chip
memory 144. The memory management unit 140 controls
access to the memory 142, 144 according to the current oper-
ating state of the data processing apparatus 100 such that, for
example, in auser mode a smaller subset of memory locations
are accessible to the data processing circuitry 100 than are
accessible in a system mode.

The memory management unit 140 is responsible for han-
dling all access requests to memory by the execution pipeline
110 and its functions include translation of virtual memory
addresses to physical memory addresses, memory protection,
cache control and bus arbitration. When the data processing
apparatus 100 enters a debug mode, the execution pipeline
fetches instructions directly from an instruction transfer reg-
ister (ITR) 134 of the debug module 130. The instruction
transfer register 134 is loaded with debug instructions under
control of the debugger software 152 executing on the host PC

US 9,355,014 B2

9

150, which in the debug mode controls the data processing
circuitry 100 via the debug port 132. In this embodiment the
debugger software 152 and the host PC 150 that it runs on
represents the debugger unit. However, in alternative embodi-
ments, the debugger unit is fabricated on the same integrated
circuit as the data processing circuitry.

The control registers 160 store control values responsible
for controlling aspects of the data processing apparatus 100.
In particular, they store, for each of a plurality of “privilege
levels” of the data processing apparatus 100 (described in
detail with reference to FIG. 2) a corresponding operand
bit-width operating state associated with that privilege level.

The debug module 130 further comprises an external
debug interface register (EDIFR) 136 that maintains a record
of the register width state (i.e. operand bit-width state) asso-
ciated with each of the plurality of privilege levels and a
record of the current privilege level at which the data process-
ing apparatus 100 is operating. The EDIFR 136 is visible to
the debugger software 152.

When the data processing apparatus 100 switches from a
standard operational mode (or any non-debug mode) into a
debug mode, the data processing apparatus 100 determines
from data stored in the control registers 160, the current
operating state of the data processing apparatus and depend-
ing upon this state selects one of the plurality of different
debug instruction sets to be implemented for performing
debug operations, and updates the record in the EDIFR 136
accordingly. It is possible for the debugger software 152 to
initiate a switch of the data processing apparatus 100 from
one operating state to another different operating state whilst
in the debug mode. For example, the data processing appara-
tus can be switched from operating at a first privilege level to
execute a first group of debug instructions to operating at a
second different privilege level to execute a second group of
debug instructions. Accordingly, the debug module 130 is
configured to repeat determination of the current operating
state of the data processing circuitry 100 based on informa-
tion in the control registers 160 at the time of the operating-
state switch and to allocate an updated debug instruction set
for the debug operations, and update the record in the EDIFR
136 accordingly. In this case the debug instruction set imple-
mented may change corresponding to the operating state
switch or alternatively could remain the same.

Although in the embodiment of FIG. 1, the EDIFR 136 is
located within the debug module 130, in alternative embodi-
ments EDIFR 136 is located in the host personal computer
150 external to the data processing apparatus 100 i.e. in the
debugger unit. In yet further alternative embodiments the
EDIFR is not implemented, but the information contained
therein is obtained by the debugger unit by reading the state
values from the main system registers i.e. control registers
160. At a hardware level, the EDIFR registers 136 can be
implemented as latch circuits (as in the FIG. 1 embodiment)
or as simple combinatorial paths from the system registers.
Furthermore, although in the embodiment of FIG. 1 the host
PC (the debugger unit) is situated off-chip relative to the data
processing circuitry 100, in alternative embodiments the data
processing apparatus 100 and circuitry for controlling debug
operations and executing the debugger software 152 (i.e. the
debug unit) are fabricated on the same integrated circuit, so
that the data processing circuitry 100 does not form the entire
System-on-Chip. In such embodiments, logically the debug
circuitry can be viewed as part of a processor being debugged
and the debug unit is a second, different processor located on
the same System-on-Chip. In the embodiment of FIG. 1, the
debug circuitry of the debug module 130, which provides an
interface (e.g. and Advanced Microcontroller Bus Architec-

10

15

20

25

30

35

40

45

50

55

60

65

10

ture bus interface) to the debugger unit 150 is part of the same
“macrocell” as the data processing circuitry of the System-
on-chip 100.

FIG. 2 schematically illustrates a plurality of different
operating states of the data processing apparatus 100 of FIG.
1 corresponding to a respective plurality of different privilege
levels. Respective privilege levels correspond to respective
different hierarchical layers of software executing on the data
processing apparatus 100 of FIG. 1. The uppermost row of
FIG. 2 corresponds to the lowest privileged level PL.0 whereas
the lowermost row of FIG. 2 corresponds to the highest privi-
lege level PL3. Between the lowest privilege level PLO and
the highest privilege level PL3 there are two intermediate
privilege levels PL.1 and PL2.

The lowermost privilege level PLO corresponds to an appli-
cation software layer. In this example embodiment, six dif-
ferent application programs are executing on the data pro-
cessing apparatus 100 by time division multiplexing of the
processing resources such that at any one instant in time only
one of the six applications programs has control of the data
processing circuitry 100.

A first program application 202 is a 32-bit program com-
prising 32-bit program instructions and thus when executing
this first application 202, the data processing apparatus 100 is
in a 32-bit operating state. A second program application 204
is also a 32-bit program application whose execution requires
a 32-bit processor operating state. A third program applica-
tion 206 is a 64-bit program comprising 64-bit program
instructions and thus when executing this application, the
data processing apparatus is put into a 64-bit operating state.
A fourth program application 208 is a 32-bit program appli-
cation requiring a 32-bit processor operating state. The low-
ermost privilege level PL0 also comprises a first secure 64-bit
program application 209 and a second secure 32-bit program
application 210. These secure applications can only be
executed when the data processing apparatus is a secure mode
of operation.

The firstprivilege level PL1 (second lowest privilege level)
corresponds to an operating system software layer. In the
embodiment of FIG. 1 and FIG. 2, the data processing appa-
ratus is set up with a capability of hosting three different guest
operating systems. A first guest operating system 222, is a
32-bit operating system, meaning it comprises a 32-bit pro-
gram with 32-bit virtual addresses. A second guest operating
system 224, is a 64-bit operating system, meaning it com-
prises a 64-bit program with more than 32 bits of virtual
address. A 64-bit secure operating system 226 also sits at the
first privilege level PL1 for exclusive use in the secure mode
of processor operation.

An operating system is responsible for the management of
applications, in particular controlling the access of applica-
tions to the underlying data processing system 100 and for
time division multiplexing between different applications,
including, in multiprocessor and multithreaded processors,
the allocation of application programs to different processors
and threads. In the embodiment of FIG. 1 and FIG. 2, a 32-bit
operating system can only manage 32-bit program applica-
tions, and hence the two applications managed by the first
guest operating system 222, that is, the first program appli-
cation 202 and the second program application 204, are both
32-bit program applications. However, a 64-bit operating sys-
tem is capable of managing both 64-bit and 32-bit program
applications, and hence the applications managed by the sec-
ond guest operating system 224 and by the secure operating
system 226 comprise a mix of 32-bit program applications
and 64-bit program applications. The operating systems, 222,
224 and 226, are responsible for controlling a pair of Trans-

US 9,355,014 B2

11

lation Table Base Registers (TTBR0O_PL1 and TTBR1_PL1)
which influence how virtual to physical memory address
translation is performed for each of the applications executing
at privilege level PLO and for the operating system itself
executing at privilege level PL1.

The second privilege level PL2, corresponds to a hypervi-
sor software layer. In FIG. 2 the hypervisor 230 is a 64-bit
program comprising 64-bit program instructions that
executes on the data processing apparatus 100 and enables the
first guest operating system 222, the second guest operating
system 224 to be executed on the same data processing appa-
ratus 100. The hypervisor 230 is part of a virtualisation sys-
tem which enables the first guest operating system 222 and
second guest operating system 224 to run on the same data
processing apparatus 100 without having any knowledge that
the other guest operating system is concurrently executing
there.

The hypervisor is responsible for managing the operating
systems, in particular controlling the access of operating sys-
tems to the underlying data processing system 100 and for
time division multiplexing between different operating sys-
tems, including, in multiprocessor and multithreaded proces-
sors, the allocation of operating systems to different proces-
sors and threads. A 64-bit hypervisor is capable of managing
both 32-bit and 64-bit operating systems, and hence the oper-
ating systems managed by hypervisor 230 comprise a mix of
32-bit and 64-bit operating systems. The hypervisor 230 con-
trols implementation of a Virtual Translation Table Base Reg-
ister (VITBR_PL2) which further influences how virtual to
physical memory address translation is performed for each of
the operating systems executing at privilege level PL1, and
for the applications managed by those operating systems
executing at privilege level PLO. The hypervisor 230 also
controls implementation of a third Translation Table Base
Register (I'TBR_PL2) which controls how virtual to physical
memory address translation is performed for the hypervisor
executing at privilege level PL2. Virtual to physical address
translation at PL.2 is therefore independent of virtual to physi-
cal address translation at PL0 and PL1.

The highest privilege level is PL.3 and this corresponds to a
secure monitor 240 software layer, which in this case is a
64-bit program comprising 64-bit program instructions. The
secure monitor 240 operates as a gatekeeper between soft-
ware executing in the non-secure mode, that is, the hypervisor
230, operating systems 222, 224, and the applications, 202,
204,206 and 208, and software executing in the secure mode,
that is the secure operating system 226 and the pair of secure
applications 209, 210. As shown in FIG. 2, when the data
processing apparatus is in a secure mode, the hypervisor 230
is not utilised. Thus in the secure mode there are effectively
only three privilege levels: PLO, PL.1 and PL3. The secure
monitor 240 also controls implementation of a fourth Trans-
lation Table Base Register (I'TBR_PL3) which controls how
virtual to physical memory address translation is performed
for the secure monitor executing at privilege level PL3. Vir-
tual to physical address translation at PL3 is therefore inde-
pendent of virtual to physical address translation at PL0, PL.1
and PL2.

For a data processing apparatus 100 comprising a single
execution pipeline 110 capable only of single-threaded
operation, at any one point in time only a single program
application will be running under control a single operating
system, in either secure or non-secure mode. For each of the
four privilege levels illustrated FIG. 2, the EDIFR 136 of the
debug module 130 of FIG. 1 stores a corresponding operand
bit-width. In this embodiment since there are four possible
privilege levels, a field RW [3:0], i.e. a 4-bit field of the 32-bit

5

10

15

20

25

30

35

40

45

50

55

60

65

12

EDIFR register 136, is used to provide an indication of the
operand bit-width (or equivalently register width) corre-
sponding to each exception level.

The contents of the field RW[3:0] for each of the possible
operating states of the data processing apparatus is shown at
the top of FIG. 2. When the first program application 202 is
executing on the first guest operating system 222 under con-
trol of the hypervisor 230 and in a system having the secure
monitor 240, the 4-bit register field RW[3:0] has the value of
“1100”. This is because in this embodiment, a value of “1” is
used to indicate a 64-bit processor state where as a value of
“0” is used to indicate a 32-bit processor architecture state.
The four bits of the RW register field correspond respectively
to PL3, PL2, PL1 and PL.0. Similarly when the second pro-
gram application 204 is executing on the first guest operating
system 222 on top of the hypervisor 230 and the secure
monitor 240, the four bit register field RW [3:0] has the value
0t “1100”. On the other hand, when the third program appli-
cation 206 (which is a 64-bit application) is executing on the
64-bit second guest operating system 224, the register field
RW [3:0] has a value of “1111” because the application, the
operating system the hypervisor and the secure monitor all
correspond to 64-bit program code. When the fourth program
application 208 is executing on the second guest operating
system the 4-bit register field RW [3:0] has a value of “1110”
because all except the lowermost privilege level (i.e. the
fourth program application 208) correspond to 64-bit code.

When the data processing apparatus is operating in a secure
mode there are only three rather than four privilege levels
because the hypervisor layer 230 corresponding to PL2 is
absent. Thus the choice of value for RW [2] is somewhat
arbitrary. In the data processing apparatus of FIG. 1, RW [2]
is set to the same value as RW [1] when operating in a secure
mode. Thus in FIG. 2, when the first, 64-bit, secure applica-
tion 209 is executing on the secure operating system 226, the
register field RW [3:0] has the value “1111”, and when the
second, 32-bit, secure application 210 is executing the regis-
ter field RW [3:0] has the value “1110”.

It will be appreciated that in other embodiments compris-
ing multiple processors, and hence multiple execution pipe-
lines, and/or processor(s) capable of executing multiple
threads concurrently, at any one point multiple program
applications can be running, possibly under the control of
multiple operating systems, and possibly in a mix of secure
and non-secure mode. In such embodiments the control fields
of EDIFR can be duplicated to provide the same information,
once for each hardware thread.

FIG. 3 schematically illustrates how the data processing
apparatus of FIG. 1 is configured to have the ability to switch
between different ones of the plurality of privilege levels
during execution of program instructions and how at different
privilege levels the virtual to physical addressed translation
scheme can differ.

FIG. 3 shows a 32-bit program application 410 at the low-
ermost privilege level PL0, a 32-bit guest operating system
420 at the next highest privilege level PL1, a 64-bit hypervisor
430 at the next privilege level PL.2 and a 64-bit secure monitor
440 at the highest privilege level PL3. The operating state of
the data processing apparatus 100 of FIG. 1 can switch up and
down between different ones of the four privilege levels PLO,
PL1, PL2, PL3 when the data processing circuitry 100 is
executing program instructions either in non-debug mode or
in a debug mode. As the data processing apparatus switches
between these privilege levels, so the operating state changes.

When the data processing apparatus is executing program
instructions from the privilege level PL0O, a 32-bit virtual
memory address that has been generated by the program code

US 9,355,014 B2

13

will be translated in to an intermediate physical address using
the Translation Table Base Registers (I'TBRO_PL1 and
TTBR1_PL1) specific to the privilege level to which the guest
operating system 420 belongs. The intermediate physical
address will in turn be translated into the final physical
address using the Virtual Translation Table Base Register
(VITBR_PL2) corresponding to the privilege level PL2 of
the hypervisor 430.

Similarly, when executing program instructions of the
32-bit guest operating system 420, a 32-bit virtual address
corresponding to the guest operating system instruction being
executed will be translated, using translation table base reg-
isters TTBRO_PL1 and TTBR1_PL2 corresponding to the
privilege level PL1 of the guest operating system 420, into an
intermediate physical address and that intermediate physical
address will in turn be translated into a final physical address
with reference to a Virtual Translation Table Base Register
relevant to hypervisor 430.

By way of contrast, when a the program instruction of the
64-bit hypervisor 430 is executed corresponding to the privi-
lege level P12, only a single stage virtual to physical address
translation need be performed so the 64-bit virtual address is
directly translated into the physical address with reference to
a Translation Table Base Register relevant to the hypervisor
privilege level (I'TBR_PL2). No Virtual Translation Table
Base Register is required in this case.

In addition to the differences between virtual address size
and virtual to physical address translations at the different
privilege levels of FI1G. 3, there is also a difference in acces-
sibility to the system registers and/or memory locations at
different privilege levels. In particular, at the highest privilege
level all of the system registers will be visible and progres-
sively fewer system registers will be available at progres-
sively lower privilege levels.

In addition, where system control registers are specifically
linked to an operating state they may appear as 32-bit system
registers when accessed in a 32-bit state but appear as 64-bit
registers when accessed in a 64-bit state. For example, a Fault
Address Register (FAR) (not shown) contains a virtual
address and is 32 bits wide in a 32-bit state but 64 bits wide in
a 64-bit state. Other system registers are naturally 64 bits
wide and so must be accessed using special system instruc-
tions which operate on a pair of the 32-bit general purpose
registers when accessed in the 32-bit operating state, but can
be accessed with a regular system register instruction operat-
ing on a single 64-bit general purpose register when accessed
in the 64-bit operating state. For example, the TTBR registers
contain the physical base address of a translation table, and
since physical addresses are greater than 32 bits in size, are 64
bits wide in both the 32-bit operating state and the 64-bit
operating state. Other system registers may be accessible in
one state but not the other.

Since the virtual to physical address translation scheme
depends upon the operating state of the processor and, in the
case FIG. 3, corresponds to the privilege level at which the
data processing system is currently operating, it is not pos-
sible to arbitrarily allocate a debug instruction set to perform
a debug operation at any given privilege level. For example, a
problem would be encountered if a 64-bit debug instruction
set was allocated when the data processing apparatus was in
an operating state corresponding to PL.1 of FIG. 3 because the
guest operating system 420 operating at this privilege level is
a 32-bit guest operating systems which implements a virtual
to physical address translation scheme that requires 32-bit
virtual addresses to be generated from 64-bit debug instruc-
tions. A further problem would be encountered if the 64-bit
debug instruction set to read a TTBR register were executed

40

45

55

14

in operating state corresponding to PL.1 of FIG. 3 because this
instruction normally transfers data between a 64-bit system
register and a single 64-bit general purpose register, but the
32-bit instruction set equivalent transfers between a 64-bit
system register and a pair of 32-bit general purpose registers.

FIG. 4A schematically illustrates bit-allocation for the
EDIFR register 136 of FIG. 1. As shown in the FIG. 4A, the
EDIFR is a 32-bit register in which bits EDIFR [9:8] are
allocated to designating the current privilege level when the
data processing apparatus is in the debug state whilst bits
EDIFR [13:10] are allocated as indicating for each of the four
privilege levels of the embodiment of FIG. 2, a corresponding
operand bit-width associated with that privilege level. The
operand bit-width for each privilege level can alternatively be
referred to as the register width for the embodiment of FIG. 1,
which has a variable register-width (32-bit or 64-bit configu-
rations). Thus the operand bit-width or register-width field of
the EDIFR will be denoted RW [13:10] whilst the bits allo-
cated for specifying the current privilege will be denoted PL.
[9:8]. The operand bit-width indicator bits RW[13:10] are
allocated such that bit 13 corresponds to the highest privilege
level whilst bit 10 corresponds to the lowest privilege level i.e.
bits 13 to 10 respectively correspond to PL3, P12, PL.1 and
PLO. The field RW [13:10] is a read-only field whilst the field
PL[9:8] is writable by the data processing apparatus to update
the current privilege level.

The table of FIG. 4B shows for each of the four possible
values of the two-bit field PL [9:8] the corresponding privi-
lege indicated. In particular, PL [9:8]=00 corresponds to low-
ermost privilege level PLO; PL [9:8]=01 corresponds to PL.1;
PL [9:8]=10 corresponds to PL2; and PL [9:8]=11 corre-
sponds to uppermost privilege level PL3. As far as the debug
circuitry is concerned, these two bits PL [9:8] are read-only.
When the data processing apparatus 100 is in the debug mode
the two bits PL [9:8] represent the current privilege level of
the processor whereas if the data processing apparatus is in a
non-debug state, the two bit field PL [9:8] is set to the value
“00”.

The table of FIG. 4C specifies for different bit-values of the
EDIFR field RW [13:10] the corresponding processor register
width operating state (or equivalently operand bit-width oper-
ating state) for each of the four privilege levels corresponding
respectively to the four RW bits. A value of RW [13:10]=1111
corresponds to all four privilege levels being in a 64-bit reg-
ister width state. A value of RW [13:10]=1110 corresponds to
the uppermost three privilege levels PL3, PL2, PL1 being in a
64 bit register width state and the lowermost privilege level
PLO being in a 32-bit register width state. A value of RW
[13:10]=1100 corresponds to the uppermost two privilege
levels PL3, PL.2 being in a 64-bit register width state whist the
lowermost two privilege levels PL1, PL0 being in a 32-bit
register width state. It should be noted that this particular
value, RW [13:10]=1100, will not been seen when the data
processing apparatus is currently operating in a secure mode
because, as shown in FIG. 2, the hypervisor layer correspond-
ing to PL2 is invisible to the secure mode. A value of RW
[13:10]=1000 corresponds to the uppermost privilege level
PL3 being in a 64-bit register width state while the remaining
lower three privilege levels PL2, PL1, PL0 are in a 32-bit
register width state. This particular bit pattern RW [13:10]
=1000 has also been chosen to indicate for the secure mode
that PL3 is in the 64-bit register width state whilst PL.1 and
PL0 are in the 32-bit register width state (in this state PL2 is
absent). The bit pattern of RW [13:10]=0000 indicates that all
four privilege levels correspond to a 32-bit register width
state. Other values of RW [13:10] are not permitted.

US 9,355,014 B2

15

For this particular embodiment, certain predefined values
have been chosen for the register width state indicator RW
and the privilege level status indicator PL for convenience.
For example if the data processing apparatus is not in a debug
mode then the field RW [13:10] is set to “1111”. If the current
privilege level is anything other than PL0, then the lowermost
bit RW [10] of the lower bit register width field is set identi-
cally equal to RW [11]. In the secure mode PL.2 is not present
and hence RW [12] is set identically to RW [11].

FIG. 5 schematically illustrates, for a 32-bit register width
state labelled “A Arch 32” and for a 64-bit register width state
labelled “AArch 647, the corresponding instruction sets that
can be executed when the processor is in the given register
width state. In FIG. 5 a first set labelled 510 corresponds to
“AArch 327, that is, a 32-bit operand width or 32-bit register
width state. In this processor state, the data processing appa-
ratus is capable of executing three different instruction sets. A
first instruction set 522 is the “A32” instruction set corre-
sponding to high performance 32-bit wide instructions oper-
ating on 32-bit wide data. A second instruction set 524 is the
“T32” instruction set which represents a more compact
instruction set comprises a subset of the most frequently used
A32 instructions compressed into a 16-bit wide format, but
these instructions also operate on 32-bit wide data. A third
instruction set 526 is the “T32EE” instruction set (also known
as the “ThumbEE” instruction set), which represents a com-
pact instruction set similar to T32 but incorporating exten-
sions appropriate for virtual machines providing the capabil-
ity to perform conversion between object-oriented program
code such as Java instructions and T32EE instructions. Thus
there are three options for instruction sets that can be executed
when the processor is operating according in a 32-bit register
width state (i.e. operating on 32-bit wide data): A32, T32 and
T32EE.

In FIG. 5, a second set 550 represents a 64-bit register
width state “AArch 64”, in which a single “A64” instruction
set 562 can be executed. The A64 instruction set operates on
64-bit wide data. Notably, in this embodiment, there is no
intersection between the set of AArch 64 instruction sets 550
and the set of AArch 32 instruction sets 510. According to the
present technique, if it is determined that the data processing
apparatus 100 is currently in the A Arch 64 register width state
550 then the A64 instruction set 562 is allocated as the debug
instruction set whereas if the processor is in the AArch 32
register width state upon entry to the debug mode then the T32
instruction set 524 is selected as the debug instruction set
regardless of whether the processor was executing the A32
instruction set 522, the T32 instruction set 524 or the T32EE
instruction set 526 upon entry to the debug mode. Clearly, the
particular choice of the T32 instruction set 524 for the 32-bit
register width state AArch 32 is specific to this particular
embodiment. In alternative embodiments, any one of the
three possible AArch 32 instruction sets 522, 524, 526 could
be selected as the debug instruction set. In further alternative
embodiments, a subset of one of the full non-debug mode
instruction sets is selected as the debug mode instruction set.

FIG. 6 is a flow chart that schematically illustrates opera-
tions performed by the data processing apparatus of FIG. 1 in
order to determine an appropriate debug instruction set for
implementation by the debugging module 130.

The process begins at stage 610 where the execution pipe-
line 110 is processing instructions obtained from either the
on-chip memory 142 or the off-chip memory 144. Thus, at
stage 610 the data processing apparatus is executing instruc-
tions in a standard operating mode rather than a debug mode.
The process then proceeds to stage 620, where it is deter-
mined whether or not a debug event has occurred. If no debug

10

15

20

25

30

35

40

45

50

55

60

65

16

event has occurred at stage 620 then the processor returns to
stage 610 where the execution pipeline continues to fetch,
decode and execute instructions from the memory 142, 144.
However, if a debug event has in fact been detected at stage
620 then the process proceeds to stage 630, whereupon the
data processing apparatus (data processing circuitry) enters
debug mode. After stage 630, the process proceeds to stage
640, where it is determined whether or not the data processing
apparatus is in a 64-bit processor state. If the data processing
apparatus is found to be in a 32-bit processor state at stage 640
then the process proceeds to stage 650 where the data pro-
cessing circuitry allocates the T32 instruction set as the debug
instruction set. The process then proceeds to stage 670. On the
other hand, if it is determined at stage 640 that the data
processing apparatus is in a 64-bit processor state corre-
sponding to the state 550 FIG. 5, then the process proceeds to
stage 660 where the data processing circuitry allocates the
A64 instruction set for the purpose of the debug operations.
As shown in FIG. 5, the A64 instruction set is an instruction
set that the data processing circuitry can execute in a 64-bit
processor operating state whilst the T32 instruction set is one
of three different instruction sets that the data processing
apparatus can execute in a 32-bit processor operating state in
a non-debug mode.

Although in the embodiment of FIG. 6, either the A64 or
the T32 instruction set is allocated by the processor at stages
650 and 660, in alternative embodiments, the allocated debug
instruction set comprises a subset of the full instruction set.
For example, a subset of one of the A64 instruction set, the
A32 instruction set, the T32 instruction set or the T32EE
instruction set. A subset of a full instruction set suitable for
use in the debug mode may for example be appropriately
chosen to preclude execution of instructions such as branch
instructions, which are undesirable in a debug mode. Thus in
a subset of the T32 or A64 instruction set, branch instructions
etc. could be forced to be undefined.

Subsequent to both stage 650 and 660, the process pro-
ceeds to stage 670 where the debug circuitry 130 indicates to
the debugger 152 (i.e. the debugger unit) which instruction set
to use. At this stage the data processing circuitry also updates
registers in the debug module 130 to indicate which instruc-
tion set is currently in use. Once the appropriate debug
instruction set is indicated at stage 670, the process proceeds
to stage 680 where execution of debug instructions begins. At
this stage, since the processor is in the debug mode, the
execution pipeline 110 no longer fetches instruction from the
memory, but instead fetches instructions directly from the
instruction transfer register 134 of the debug module 130 FIG.
1.

After stage 680, the process proceeds to stage 690, where it
is determined whether or not the data processing apparatus
should exit the debug mode. The debug mode will be exited at
stage 690 if the debug operations being controlled by the
debugger software 152 are complete and if so, the process
returns to stage 610 where the processor switches out of the
debug mode back into the standard operational mode where-
upon instructions are fed to the execution pipeline 110 from
the memory 142, 144. On the other hand, if at stage 690 it is
determined that further debug operations are required and the
data processing apparatus should remain in the debug mode,
then the process proceeds to 700 where it is established
whether or not there has been a change to the current privilege
at which the data processor is operating whilst in the debug
mode.

If there has been no change to the privilege level since the
most recently established privilege level then the process
returns to stage 680. Thus if there is no change to the current

US 9,355,014 B2

17

privilege level and the data processing apparatus is still in the
debug state then instructions from the instruction transfer
register 134 continue to be processed. However, whenever
there is a change to the privilege level at stage 700, the process
returns to stage 640 where the allocated debug instruction set
is updated according to the current privilege level.

FIG. 7 illustrates a virtual machine implementation that
may be used. Whilst the earlier described embodiments
implement the present invention in terms of apparatus and
methods for operating specific processing hardware support-
ing the techniques concerned, it is also possible to provide
so-called virtual machine implementations of hardware
devices. These virtual machine implementations run on a host
processor 740 running a host operating system 730 support-
ing a virtual machine program 720. Typically, large powerful
processors are required to provide virtual machine implemen-
tations which execute at a reasonable speed, but such an
approach may be justified in certain circumstances, such as
when there is a desire to run code native to another processor
for compatibility or re-use reasons. The virtual machine pro-
gram 720 provides an application program interface to an
application program 710 which is the same as the application
program interface which would be provided by the real hard-
ware which is the device being modeled by the virtual
machine program 720. Thus, the program instructions,
including the control of memory accesses described above,
may be executed from within the application program 710
using the virtual machine program 720 to model their inter-
action with the virtual machine hardware.

Although illustrative embodiments of the invention have
been described in detail herein with reference to the accom-
panying drawings, it is to be understood that the invention is
not limited to those precise embodiments, and that various
changes and modifications can be effected therein by one
skilled in the art without departing from the scope and spirit of
the invention as defined by the appended claims.

We claim:

1. A data processing apparatus comprising:

data processing circuitry for performing data processing

operations in response to execution of program instruc-
tions, said data processing circuitry being configured to
operate in at least an operational mode and a debug
mode;

debug circuitry configured to provide an interface between

said data processing circuitry and a debugger unit exter-
nal to said data processing circuitry, said debug circuitry
being configured to control operation of said data pro-
cessing circuitry using debug instructions of a debug
instruction set when said data processing circuitry is
operating in said debug mode;

wherein said data processing circuitry has a plurality of

operating states including a first operating state and a
second operating state, wherein in said first operating
state the data processing circuitry uses virtual addresses
having a greater number of bits than virtual addresses
used in said second operating state, and in said first
operating state said data processing circuitry is config-
ured to execute instructions from a first instruction set,
and in said second operating state said data processing
circuitry is configured to support execution of instruc-
tions from a second instruction set and a third instruction
set; and

wherein said data processing circuitry is configured to

determine, upon entry of said data processing circuitry
into said debug mode, a current operating state of said
data processing apparatus and to allocate said debug
instruction set depending upon said current operating

10

15

20

25

30

35

40

45

50

55

60

65

18

state, wherein said data processing circuitry is config-
ured to allocate said first instruction set as said debug
instruction set if said current operating state is said first
operating state, and to allocate said second instruction
set as said debug instruction set if said current operating
state is said second operating state regardless of whether
said data processing circuitry executed instructions from
said second instruction set or said third instruction set
prior to said entry into said debug mode.

2. Data processing apparatus according to claim 1, wherein
said data processing circuitry is configured to indicate to said
debugger unit said allocated debug instruction set to be used
to control said data processing circuitry.

3. Data processing apparatus according to claim 1, wherein
said data processing circuitry is configurable to operate at a
plurality of privilege levels, wherein at different privilege
levels, said data processing circuitry imposes on program
instructions different access permissions to at least one of a
memory and a set of registers.

4. Data processing apparatus according to claim 3, wherein
at different ones of said privilege levels, said data processing
circuitry applies respectively different virtual memory
address to physical memory address translation rules.

5. Data processing apparatus according to claim 3, wherein
said data processing apparatus is configured to execute pro-
gram instructions corresponding to a plurality of different
software hierarchical levels corresponding to a respective
plurality of said privilege levels.

6. Data processing apparatus according to claim 5, wherein
a first of said plurality of privilege levels corresponds to an
application layer and a second of said plurality of privilege
levels corresponds to an operating system layer.

7. Data processing apparatus according to claim 6, wherein
a third of said plurality of privilege levels corresponds to a
hypervisor layer.

8. Data processing apparatus according to claim 6, wherein
a further privilege level corresponds to a security-monitoring
layer.

9. Data processing apparatus according to claim 3, wherein
upon switching between different ones of said plurality of
privilege levels, said data processing circuitry is configured to
repeat said determination of said current operating state and
said debug instruction set to generate an updated debug
instruction set and to indicate said updated debug instruction
set to said debugger unit.

10. Data processing apparatus according to claim 1,
wherein said current operating state is selected from a plural-
ity of different processor operating states having respective
different operand bit-widths.

11. Data processing apparatus according to claim 10,
wherein said plurality of operating states comprise at least a
32-bit operating state and a 64-bit operating state.

12. Data processing apparatus according to claim 10,
wherein said data processing apparatus comprises a plurality
of registers for storing operands of said program instructions
and wherein said different operand bit-widths correspond to
different register widths used by said data processing cir-
cuitry.

13. Data processing apparatus as claimed in claim 12,
wherein at least a subset of said plurality of registers are
configured as variable-width registers.

14. Data processing apparatus according to claim 2,
wherein said data processing circuitry is configured to indi-
cate said debug instruction set to said debugger unit by writ-
ing to at least one register accessible to said debugger unit.

15. Data processing apparatus according to claim 2,
wherein said data processing circuitry is configured to indi-

US 9,355,014 B2

19

cate said debug instruction set to said debugger unit by send-
ing a control command to said debugger unit.

16. Data processing apparatus according to claim 1,
wherein said data processing apparatus is configured to main-
tain a stored value of said current operating state in a given
location accessible to said debugger unit.

17. Data processing apparatus according to claim 3,
wherein said current operating state is selected from a plural-
ity of processor operating states having respective operand
bit-widths and wherein data processing apparatus is config-
ured to maintain a record of an operand bit-width associated
with each of said plurality of privilege levels in a first location
accessible to said debugger unit.

18. Data processing apparatus according to claim 17,
wherein said data processing apparatus is configured to main-
tain a record of a current privilege level at which said data
processing circuitry is operating in a second location acces-
sible to said debugger unit.

19. Data processing apparatus as claimed in claim 18,
wherein said data processing circuitry uses said current privi-
lege level to determine from said plurality of processor oper-
ating states having said respective operand bit-widths said
debug instruction set.

20. Data processing apparatus according to claim 1,
wherein said data processing apparatus is configured to main-
tain a record of a current operand bit-width corresponding to
said current processor operating state.

21. Data processing apparatus according to claim 20,
wherein said debugger unit is configured to deduce said
debug instruction set allocated by said data processing cir-
cuitry from said record of said current operand bit width.

22. Data processing apparatus according to claim 21,
wherein said debugger unit is configured to cause at least one
program instruction to be executed by said data processing
circuitry to determine a current privilege level at which said
data processing circuitry is operating.

23. Data processing apparatus as claimed in claim 1,
wherein said allocated debug instruction set comprises a sub-
set of a full instruction set available for execution by said data
processing apparatus in a non-debug mode.

24. Data processing apparatus as claimed in claim 23,
wherein said subset of said full instruction set excludes at
least branch instructions.

25. A non-transitory computer readable storage medium
storing a virtual machine provided by a computer program
which, when executed by a data processing apparatus, pro-
vides an instruction execution environment according to the
data processing apparatus as claimed in claim 1.

26. A debug unit for performing debugging of operations of
a data processing apparatus comprising processing circuitry,
said data processing apparatus being capable of operating at
least in a debug mode and an operational mode and in a
plurality of different operating states, said debug unit com-
prising:

reading circuitry for reading from a storage location within

said data processing apparatus, a record of a current
operating state specifying one of said plurality of oper-
ating states of said data processing apparatus, wherein
said plurality of different operating states include a first
operating state and a second operating state, and in said
first operating state said data processing apparatus sup-
ports virtual addresses having a greater number of bits
than virtual addresses supported in said second operat-
ing state, and in said first operating state said data pro-
cessing apparatus supports execution of instructions
from a first instruction set, and in said second operating
state said data processing apparatus is configured to

20

40

45

55

20

support execution of instructions from a second instruc-
tion set and a third instruction set; and

deducing circuitry for deducing, depending upon the cur-

rent operating state, a debug instruction set for use in
generating debug instructions for supply to debug cir-
cuitry of said data processing apparatus to control opera-
tion of said processing circuitry for performing said
debugging, wherein said deducing circuitry is config-
ured to deduce that said first instruction set is said debug
instruction set if said current operating state is said first
operating state, and to deduce that said second instruc-
tion set is said debug instruction set if said current oper-
ating state is said second operating state regardless of
whether said data processing apparatus executed
instructions from said second instruction set or said third
instruction set prior to said entry into said debug mode.

27. A debug unit as claimed in claim 26, wherein said
deducing circuitry is configured to deduce said debug instruc-
tion set based on said read contents of said current operand
bit-width record within said data processing apparatus.

28. A debug unit as claimed in claim 27, wherein said data
processing apparatus is capable of operating at a plurality of
different privilege levels, wherein at different privilege levels,
said data processing apparatus imposes on program instruc-
tions different access permissions to at least one of memory
and a set of registers and wherein said deducing circuitry is
configured to cause at least one program instruction to be
executed by said data processing apparatus to determine a
current privilege level at which said data processing apparatus
is operating.

29. A debug method for performing debugging of opera-
tions of a data processing apparatus comprising data process-
ing circuitry, said data processing apparatus being capable of
operating at least in a debug mode and an operational mode
and in a plurality of different operating states, said debug
method comprising:

reading from a storage location within said data processing

apparatus, a record of a current operating state specify-
ing one of said plurality of operating states of said data
processing apparatus, wherein said plurality of different
operating states include a first operating state and a
second operating state, and in said first operating state
said data processing apparatus uses virtual addresses
having a greater number of bits than virtual addresses
used in said second operating state, and in said first
operating state said data processing apparatus supports
execution of instructions from a first instruction set, and
in said second operating state said data processing appa-
ratus is configured to support execution of instructions
from a second instruction set and a third instruction set;
and

deducing, depending upon the current operating state, a

debug instruction set for use in generating debug instruc-
tions for supply to debug circuitry of said data process-
ing apparatus to control operation of said data process-
ing circuitry for performing said debugging, wherein
said first instruction set is deduced to be said debug
instruction set if said current operating state is said first
operating state, and said second instruction set is
deduced to be said debug instruction set if said current
operating state is said second operating state regardless
of whether said data processing apparatus executed
instructions from said second instruction set or said third
instruction set prior to said entry into said debug mode.

US 9,355,014 B2

21 22
30. A non-transitory computer readable storage medium port execution of instructions from a second instruction
storing a computer program which, when implemented on a set and a third instruction set;
data processing apparatus, implements the debug method of providing a debug interface between said data processing
claim 29. circuitry and a debugger unit external to said data pro-
31. A data processing apparatus comprising: 5 cessing circuitry, said debug interface being configured

; . . . 1 trol ti f said dat i ircuit
means for performing data processing operations in O COMUD! Operation o sai & Processing creuiry

response to execution of program instructions, said
means for performing data processing operations being
configured to operate in at least an operational mode and
a debug mode;

means for debugging configured to provide an interface

between said means for performing data processing and
ameans for debug analysis external to said data process-
ing apparatus, said means for debugging being config-
ured to control operation of said means for performing
data processing using debug instructions of a debug
instruction set when said means for performing data
processing is operating in said debug mode;

wherein said means for performing data processing opera-

tions has a plurality of operating states including a first
operating state and a second operating state, wherein in
said first operating state the means for performing data
processing operations uses virtual addresses having a
greater number of bits than virtual addresses used in said
second operating state, and in said first operating state
said means for performing data processing operations is
configured to execute instructions from a first instruc-
tion set, and in said second operating state said means for
performing data processing operations is configured to
support execution of instructions from a second instruc-
tion set and a third instruction set; and

wherein said means for performing data processing is con-

figured to determine, upon entry of said means for per-
forming data processing into said debug mode, a current
operating state of said means for performing data pro-
cessing and to allocate said debug instruction set
depending upon said current operating state; and

wherein said means for performing data processing is con-

figured to allocate said first instruction set as said debug
instruction set if said current operating state is said first
operating state, and to allocate said second instruction
set as said debug instruction set if said current operating
state is said second operating state regardless of whether
said means for performing data processing operations
executed instructions from said second instruction set or
said third instruction set prior to said entry into said
debug mode.

32. A data processing method comprising:
performing data processing operations in response to

execution of program instructions on data processing
circuitry being configured to operate in at least an opera-
tional mode and a debug mode, wherein said data pro-
cessing circuitry has a plurality of operating states
including a first operating state and a second operating
state, wherein in said first operating state the data pro-
cessing circuitry uses virtual addresses having a greater
number of bits than virtual addresses used in said second
operating state, and in said first operating state said data
processing circuitry is configured to execute instructions
from a first instruction set, and in said second operating
state said data processing circuitry is configured to sup-

40

45

using debug instructions of a debug instruction set when
said data processing circuitry is operating in said debug
mode;

determining, upon entry of said data processing circuitry

into said debug mode, a current operating state of said
data processing circuitry and allocating said debug
instruction set, depending upon said current operating
state,

wherein said first instruction set is allocated as said debug

instruction set if said current operating state is said first
operating state, and said second instruction set is allo-
cated as said debug instruction set if said current oper-
ating state is said second operating state regardless of
whether said data processing circuitry executed instruc-
tions from said second instruction set or said third
instruction set prior to said entry into said debug mode.

33. A computer program product comprising a non-transi-
tory computer readable storage medium storing a computer
program, said program, when implemented on a data process-
ing apparatus, implements the method of claim 32.

34. Apparatus for performing debugging of operations of a
data processing apparatus comprising data processing cir-
cuitry, said data processing apparatus being capable of oper-
ating at least in a debug mode and an operational mode and in
a plurality of different operating states, said apparatus com-
prising:

means for reading from a storage location within said data

processing apparatus, a record of a current operating
state specifying one of said plurality of operating states
of said data processing apparatus, wherein said plurality
of different operating states include a first operating
state and a second operating state, and in said first oper-
ating state said data processing apparatus uses virtual
addresses having a greater number of bits than virtual
addresses used in said second operating state, and in said
first operating state said data processing apparatus sup-
ports execution of instructions from a first instruction
set, and in said second operating state said data process-
ing apparatus is configured to support execution of
instructions from a second instruction set and a third
instruction set; and

means for deducing, depending upon the current operating

state, a debug instruction set for use in generating debug
instructions for supply to debug circuitry of said data
processing apparatus to control operation of said data
processing circuitry for performing said debugging,
wherein said means for deducing is configured to deduce
that said first instruction set is said debug instruction set
if said current operating state is said first operating state,
and to deduce that said second instruction set is said
debug instruction set if said current operating state is
said second operating state regardless of whether said
data processing apparatus executed instructions from
said second instruction set or said third instruction set
prior to said entry into said debug mode.

#* #* #* #* #*

